當(dāng)前位置:首頁(yè) > 科技文檔 > 地球物理 > 正文

基于優(yōu)化算法的CNN-BiLSTM-attention的月徑流量預(yù)測(cè)

人民長(zhǎng)江 頁(yè)數(shù): 9 2023-12-28
摘要: 為有效提取徑流時(shí)間序列的信息特征,提高徑流預(yù)測(cè)模型的高維非線性擬合能力和預(yù)測(cè)性能的穩(wěn)定性,將卷積神經(jīng)網(wǎng)絡(luò)(CNN)、雙向長(zhǎng)短期記憶網(wǎng)絡(luò)(BiLSTM)和注意力機(jī)制(attention)相結(jié)合,構(gòu)建了CNN-BiLSTM-attention的徑流組合模型。以長(zhǎng)江流域中游漢口站徑流量數(shù)據(jù)進(jìn)行模擬驗(yàn)證,對(duì)比分析BiLSTM,CNN,BiLSTM-attention, CNN-BiLS... (共9頁(yè))

開通會(huì)員,享受整站包年服務(wù)立即開通 >
科技文檔
數(shù)學(xué) 力學(xué) 化學(xué) 金融 證券 保險(xiǎn) 投資 會(huì)計(jì) 審計(jì) 園藝 林業(yè) 旅游 體育 物理學(xué) 生物學(xué) 天文學(xué) 氣象學(xué) 海洋學(xué) 地質(zhì)學(xué) 新能源 金屬學(xué) 農(nóng)藝學(xué) 農(nóng)作物 管理學(xué) 領(lǐng)導(dǎo)學(xué) 自然科學(xué) 系統(tǒng)科學(xué) 資源科學(xué) 無(wú)機(jī)化工 有機(jī)化工 燃料化工 化學(xué)工業(yè) 材料科學(xué) 礦業(yè)工程 冶金工業(yè) 安全科學(xué) 環(huán)境科學(xué) 工業(yè)通用 機(jī)械工業(yè) 無(wú)線電子 電信技術(shù) 鐵路運(yùn)輸 汽車工業(yè) 船舶工業(yè) 動(dòng)力工程 電力工業(yè) 農(nóng)業(yè)科學(xué) 農(nóng)業(yè)工程 植物保護(hù) 動(dòng)物醫(yī)學(xué) 教育理論 學(xué)前教育 初等教育 中等教育 高等教育 職業(yè)教育 成人教育 自然地理 地球物理 經(jīng)濟(jì)統(tǒng)計(jì) 農(nóng)業(yè)經(jīng)濟(jì) 工業(yè)經(jīng)濟(jì) 交通經(jīng)濟(jì) 企業(yè)經(jīng)濟(jì) 文化經(jīng)濟(jì) 信息經(jīng)濟(jì) 貿(mào)易經(jīng)濟(jì) 財(cái)政稅收 市場(chǎng)研究 科學(xué)研究 互聯(lián)網(wǎng) 自動(dòng)化 輕工業(yè) 核科學(xué) 服務(wù)業(yè) 石油然氣 服務(wù)業(yè) 野生動(dòng)物 水產(chǎn)漁業(yè) 硬件 儀器儀表 航空航天 武器軍事 公路運(yùn)輸 水利水電 建筑科學(xué) 軟件