光柵分光原理
在經(jīng)典物理學(xué)中,光波穿過狹縫、小孔或者圓盤之類的障礙物時,不同波長的光會發(fā)生不同程度的彎散傳播,再通過光柵進行衍射分光,形成一條條譜帶。也就是說:空間中的一維信息通過鏡頭和狹縫后,不同波長的光按照不同程度的彎散傳播,這一維圖像上的每個點,再通過光柵進行衍射分光,形成一個譜帶,照射到探測器上,探測器上的每個像素位置和強度表征光譜和強度。一個點對應(yīng)一個譜段,一條線就對應(yīng)一個譜面,因此探測器每次成像是空間一條線上的光譜信息,為了獲得空間二維圖像再通過機械推掃,完成整個平面的圖像和光譜數(shù)據(jù)采集。
經(jīng)過狹縫的光由于不同波長照射到不同的探測器像元上,光能量很低,因此需要選擇高靈敏相機,同時需要加光源。
聲光可調(diào)諧濾波分光(AOTF)原理
AOTF由聲光介質(zhì)、換能器和聲終端三部分組成。射頻驅(qū)動信號通過換能器在聲光介質(zhì)內(nèi)激勵出超聲波。改變射頻驅(qū)動信號的頻率,可以改變AOTF衍射光的波長,從而實現(xiàn)電調(diào)諧波長的掃描。
最常用的AOTF晶體材料為TeO2即非共線晶體,也就是說光波通過晶體之后以不同的出射角傳播。如上圖所示:在晶體前端有一個換能器,作用于不同的驅(qū)動頻率,產(chǎn)生不同頻率的振動即聲波。不同的驅(qū)動頻率對應(yīng)于不同振動的聲波,聲波通過晶體TeO2之后,使晶體中晶格產(chǎn)生了布拉格衍射,晶格更像一種濾波器,使晶體只能通過一種波長的光。光進入晶體之后發(fā)生衍射,產(chǎn)生衍射光和零級光。
AOTF系統(tǒng)組成
AOTF系統(tǒng)組成:成像物鏡+準(zhǔn)直鏡+偏振片+晶體+偏振片+物鏡+detector,入射光經(jīng)過物鏡會聚之后進入準(zhǔn)平行鏡(把所有的入射光變成平行光),準(zhǔn)平行光進入偏振片通過同一方向的傳播的光,平行光進入晶體之后,平行于光軸的光按照原來方向前行,非平行光進行衍射,分成兩束相互垂直o光和e光(入射光的波長不同經(jīng)過晶體之后的o光與e光的角度也不同,因此在改變波長的過程中,圖像會出現(xiàn)漂移);o光和e光及0級光分別會聚在不同的面上。
實現(xiàn)方法
不同波長的光經(jīng)過晶體之后衍射光與0級光的夾角也不同,因此為了能夠保證更好的成像效果,在晶體的出光口加入遮擋片,即遮擋0級光,避免與衍射光一起進入sensor,造成重影。
對聚光準(zhǔn)直系統(tǒng)的優(yōu)化有兩個方面:1提高光源的聚光效果,2減小聚光準(zhǔn)直系統(tǒng)的外形尺寸。
棱鏡分光
入射光通過棱鏡后被分成不同的方向,然后照射到不同方向的探測器上進行成像。棱鏡分光后,在棱鏡的出射面鍍了不同波段的濾光膜,使得不同方向的探測器可以采集到不同光譜信息,實現(xiàn)同時采集空間及光譜信息。
芯片鍍膜
近年來,IMEC(歐洲微電子研究中心)采用高靈敏CCD芯片及SCMOS芯片研制了一種新的高光譜成像技術(shù),在探測器的像元上分別鍍不同波段的濾波膜實現(xiàn)高光譜成像,此技術(shù)大大降低了高光譜成像的成本。
目前IMEC提供三種標(biāo)準(zhǔn)的光譜探測器:100波帶的線掃描探測器,32波帶的瓷磚式鍍膜探測器,16波帶以4x4為一個波段的馬賽克式鍍膜探測器
這種光譜技術(shù)的優(yōu)點是可以同時獲得光譜分辨率和空間分辨率,可以進行快速、高性能地獲得光譜信息和空間信息,集成度高,成本低。但是缺點是光譜靈敏度較低,一般大于10nm,多用于無人機等大范圍掃描的光譜應(yīng)用領(lǐng)域。
內(nèi)容來自百科網(wǎng)