當(dāng)前位置:首頁 > 百科知識 > 光通訊 > 正文

光孤子通信

光孤子通信是一種全光非線性通信方案,其基本原理是光纖折射率的非線性(自相位調(diào)制)效應(yīng)導(dǎo)致對光脈沖的壓縮可以與群速色散引起的光脈沖展寬相平衡,在一定條件(光纖的反常色散區(qū)及脈沖光功率密度足夠大)下,光孤子能夠長距離不變形地在光纖中傳輸。

1、技術(shù)背景

        光纖通信中,限制傳輸距離和傳輸容量的主要原因是"損耗"和"色散"。"損耗"使光信號在傳輸時能量不斷減弱;而"色散"則是使光脈沖在傳輸中逐漸展寬。所謂光脈沖,其實是一系列不同頻率的光波振蕩組成的電磁波的集合。光纖的色散使得不同頻率的光波以不同的速度傳播,這樣,同時出發(fā)的光脈沖,由于頻率不同,傳輸速度就不同,到達(dá)終點的時間也就不同,這便形成脈沖展寬,使得信號畸變失真?,F(xiàn)在隨著光纖制造技術(shù)的發(fā)展,光纖的損耗已經(jīng)降低到接近理論極限值的程度,色散問題就成為實現(xiàn)超長距離和超大容量光纖通信的主要問題。

        光纖的色散是使光信號的脈沖展寬,而光纖中還有一種非線性的特性,這種特性會使光信號的脈沖產(chǎn)生壓縮效應(yīng)。光纖的非線性特性在光的強(qiáng)度變化時使頻率發(fā)生變化,從而使傳播速度變化。在光纖中這種變化使光脈沖后沿的頻率變高、傳播速度變快;而前沿的頻率變低、傳播速度變慢。這就造成脈沖后沿比前沿運動快,從而使脈沖受到壓縮變窄。

        如果有辦法使光脈沖變寬和變窄這兩種效應(yīng)正好互相抵消,光脈沖就會像一個一個孤立的粒子那樣形成光孤子,能在光纖傳輸中保持不變,實現(xiàn)超長距離、超大容量的通信。

2、基本原理

        光孤子通信是一種全光非線性通信方案,其基本原理是光纖折射率的非線性(自相位調(diào)制)效應(yīng)導(dǎo)致對光脈沖的壓縮可以與群速色散引起的光脈沖展寬相平衡,在一定條件(光纖的反常色散區(qū)及脈沖光功率密度足夠大)下,光孤子能夠長距離不變形地在光纖中傳輸。它完全擺脫了光纖色散對傳輸速率和通信容量的限制,其傳輸容量比原來最好的通信系統(tǒng)高出1~2個數(shù)量級,中繼距離可達(dá)幾百km。它被認(rèn)為是下一代最有發(fā)展前途的傳輸方式之一。

       從光孤子傳輸理論分析,光孤子是理想的光脈沖,因為它很窄,其脈沖寬度在皮秒級(ps,即s)。這樣,就可使鄰近光脈沖間隔很小而不至于發(fā)生脈沖重疊,產(chǎn)生干擾。利用光孤子進(jìn)行通信,其傳輸容量極大,可以說是幾乎沒有限制。傳輸速率將可能高達(dá)每秒兆比特。如此高速將意味著世界上最大的圖書館――美國國會圖書館的全部藏書,只需要100秒就可以全部傳送完畢。由此可見,光孤子通信的能力何等巨大。

3、關(guān)鍵技術(shù)

        通過研究,光孤子通信取得了突破性進(jìn)展。光纖放大器的應(yīng)用對孤子放大和傳輸非常有利,它使孤子通信的夢想推進(jìn)到實際開發(fā)階段。光孤子在光纖中的傳輸過程需要解決如下問題:光纖損耗對光孤子傳輸?shù)挠绊?,光孤子之間的相互作用,高階色散效應(yīng)對光孤子傳輸?shù)挠绊懸约?span id="iokd4vq" class='hrefStyle'>單模光纖中的雙折射現(xiàn)象等。由此需要涉及到的技術(shù)主要有:

3.1適合光孤子傳輸?shù)墓饫w技術(shù)

        研究光孤子通信系統(tǒng)的一項重要任務(wù)就是評價光孤子沿光纖傳輸?shù)难莼闆r。研究特定光纖參數(shù)條件下光孤子傳輸?shù)挠行Ь嚯x,由此確定能量補(bǔ)充的中繼距離,這樣的研究不但為光孤子通信系統(tǒng)的設(shè)計提供數(shù)據(jù),而且通常導(dǎo)致新型光纖的產(chǎn)生。

3.2光孤子源技術(shù)

        光孤子源是實現(xiàn)超高速光孤子通信的關(guān)鍵。根據(jù)理論分析,只有當(dāng)輸出的光脈沖為嚴(yán)格的雙曲正割形,且振幅滿足一定條件時,光孤子才能在光纖中穩(wěn)定地傳輸,研究和開發(fā)的光孤子源種類繁多,有拉曼孤子激光器、參量孤子激光器、摻餌光纖孤子激光器、增益開關(guān)半導(dǎo)體孤子激光器和鎖模半導(dǎo)體孤子激光器等?,F(xiàn)在的光孤子通信試驗系統(tǒng)大多采用體積小、重復(fù)頻率高的增益開關(guān)DFB半導(dǎo)體激光器或鎖模半導(dǎo)體激光器作光孤子源。它們的輸出光脈沖是高斯形的,且功率較小,但經(jīng)光纖放大器放大后,可獲得足以形成光孤子傳輸?shù)姆逯倒β?。理論和驗均已證明光孤子傳輸對波形要求并不嚴(yán)格。高斯光脈沖在色散光纖中傳輸時,由于非線性自相位調(diào)制與色散效應(yīng)共同作用,光脈沖中心部分可逐漸演化為雙曲正割形。

3.3光孤子放大技術(shù)

        全光孤子放大器對光信號可以直接放大,避免了傳統(tǒng)光通信系統(tǒng)中光/電、電/光的轉(zhuǎn)換模式。它既可作為光端機(jī)的前置放大器,又可作為全光中繼器,是光孤子通信系統(tǒng)極為重要的器件。實際上,光孤子在光纖的傳播過程中,不可避免地存在著損耗。不過光纖的損耗只降低孤子的脈沖幅度,并不改變孤子的形狀,因此,補(bǔ)償這些損耗成為光孤子傳輸?shù)年P(guān)鍵技術(shù)之一。有兩種補(bǔ)償孤子能量的方法,一種是采用分布式的光放大器的方法,即使用受激拉曼散解放大器或分布的摻鉺光纖放大器;另一種是集總的光放大器法,即采用摻鉺光纖放大器或半導(dǎo)體激光放大器。利用受激拉曼散射效應(yīng)的光放大器是一種典型的分布式光放大器。其優(yōu)點是光纖自身成為放大介質(zhì),然而石英光纖中的受激拉曼散射增益系數(shù)相當(dāng)小,這意味著需要高功率的激光器作為光纖中產(chǎn)生受激拉曼散射的泵浦源,此外,這種放大器還存在著一定的噪聲。集總放大方法是通過摻鉺光纖放大器實現(xiàn)的,其穩(wěn)定性已得到理論和試驗的證明,成為當(dāng)前孤子通信的主要放大方法。光放大被認(rèn)為是全光孤子通信的核心問題。

3.4光孤子開關(guān)技術(shù)

       在設(shè)計全光開關(guān)時,采用光孤子脈沖作輸入信號可使整個設(shè)計達(dá)到優(yōu)化,光孤子開關(guān)的最大特點是開關(guān)速度快(達(dá)10-2s量級),開關(guān)轉(zhuǎn)換率高(達(dá)100%),開關(guān)過程中光孤子的形狀不發(fā)生改變,選擇性能好。

4、主要優(yōu)點

        全光式光孤子通信,是新一代超長距離、超高碼速的光纖通信系統(tǒng),更被公認(rèn)為是光纖通信中最有發(fā)展前途、最具開拓性的前沿課題。光孤子通信和線性光纖通信比較有一系列顯著的優(yōu)點:

一、傳輸容量比最好的線性通信系統(tǒng)大1個~2個數(shù)量級;

二、可以進(jìn)行全光中繼。由于孤子脈沖的特殊性質(zhì)使中繼過程簡化為一個絕熱放大過程,大大簡化了中繼設(shè)備,高效、簡便、經(jīng)濟(jì)。

        光孤子通信和線性光纖通信比,無論在技術(shù)上還是在經(jīng)濟(jì)都具有明顯的優(yōu)勢,光孤子通信在高保真度、長距離傳輸方面,優(yōu)于光強(qiáng)度調(diào)制/直接檢測方式和相干光通信。

        正因為光孤子通信技術(shù)的這些優(yōu)點和潛在發(fā)展前景,國際國內(nèi)這幾年都在大力研究開發(fā)這一技術(shù)。這些研究已為實現(xiàn)超高速、超長距離無中繼光孤子通信系統(tǒng)奠定了理論的、技術(shù)的和物質(zhì)的基礎(chǔ):

一、孤子脈沖的不變性決定了無需中繼;

二、光纖放大器,特別是用激光二極管泵浦的摻鉺光纖放大器補(bǔ)償了損耗;

三、光孤子碰撞分離后的穩(wěn)定性為設(shè)計波分復(fù)用提供了方便;

四、采用預(yù)加重技術(shù),且用色散位移光纖傳輸,摻鉺光纖集總信號放大,這樣便在低增益的情況下減弱了ASE的影響,擴(kuò)大了中繼距離;

五、導(dǎo)頻濾波器有效地減小了超長距離內(nèi)噪聲引起的孤子時間抖動;

六、本征值通信的新概念使孤子通信從只利用基本孤子拓寬到利用高階孤子,從而可增加每個脈沖所載的信息量。

        光孤子通信的這一系列進(jìn)展使孤子通信系統(tǒng)實驗已達(dá)到傳輸速率10~20Gbit/s,傳輸距離13000~20000公里的水平。

5、發(fā)展前景

        在傳輸速度方面采用超長距離的高速通信,時域頻域的超短脈沖控制技術(shù)以及超短脈沖的產(chǎn)生和應(yīng)用技術(shù)使現(xiàn)行速率10~20Gbit/s提高到100Gbit/s以上;在增大傳輸距離方面采用重定時,整形,再生技術(shù)和減少ASE,光學(xué)濾波使傳輸距離提高到100000公里以上;在高性能EDFA方面是獲得低噪聲高輸出EDFA。當(dāng)然,實際的光孤子通信仍存在許多技術(shù)的難題,從已取得的突破性進(jìn)展使人們相信,光孤子通信在超長距離、高速、大容量的全光通信中,尤其在海底光通信系統(tǒng)中,有著光明的發(fā)展前景。


內(nèi)容來自百科網(wǎng)